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SOFTWARE PROJECT SCHEDULING WITH MULTITASKING 
 

Abstract: In software development projects, employees tend to switch 

between various tasks within a time period. In addition, the task duration usually 

depends on the number of the allocated employees and their skill levels. We 

investigate the software project scheduling problem with multitasking and variable 

durations (SPSPM). We present a non-linear optimisation model that is then 

linearised into an equivalent mixed-integer linear programming model. To 

efficiently solve the NP-hard SPSPM, we design a two-stage priority rule-based 

heuristic algorithm and an improved genetic algorithm (GA). Extensive computational 

experiments are conducted on a benchmark dataset consisting of 540 project instances. 

The parameter settings of the GA are determined based on the Taguchi method for the 
Design of Experiment. The computational results obtained by comparing our 

algorithms with the exact solver CPLEX reveal that our GA is effective and 

competitive.  
Keywords: Software project; Multitasking; Project scheduling; Integer 

programming; Meta-heuristic 

JEL Classification: M11, C44, C61 

 

1. Introduction 

The advancement of emerging information technologies such as artificial 

intelligence has provided new development opportunities for the software industry. 

In the meantime, a large number of software projects still suffer from low success 

rates. The CHAOS Report shows that only 29% of the investigated projects can be 

delivered on time within budget and customer requirements (Standish group, 2015).  
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The cause of the failures of many software development projects can be 

traced to the lack of effective scheduling (PMI, 2016). Software project scheduling 

aims to determine the start time of each task and who performs which task on the 

premise of satisfying task precedence relations, skill requirements, and resources 

availability constraints, such that a reasonable match between the employees with 

certain skills and tasks that require these skills forms, thereby minimising the 

project performance (e.g., project makespan, cost, etc.).  

The existing studies on software project scheduling can be classified into 

two groups. The studies in the first group rely on mathematical optimisation 

models. Kazemipoor et al. (2013) study the integer programming and goal 

programming models for the multi-skill IT project scheduling problem, 

respectively. Huang et al. (2009) adopted the linear programming model for the 

personnel allocation problem. For the integrated optimisation problem of personnel 

assignment and scheduling, researchers have studied the integer programming 

model (Maenhout & Vanhoucke, 2017; Kolisch & Heimerl, 2012) and constraint 

programming (Hauder et al., 2020). Li & Womer (2009) propose an integer 

programming model and a Benders decomposition algorithm for software project 

scheduling. However, in the group of studies, it is usually assumed that the 

duration of the task is fixed and is not dependent on the number and skill levels of 

the personnel assigned to the tasks. Such assumptions are relatively strict, because 

the different number of employees assigned to the task and the different skill levels 

of the employees lead to differences in the duration of the task, which in turn will 

affect the cost of the project. In addition, the group of studies usually ignore 

multitasking, i.e., they assume that an employee can only engage in one task within 

a period of time. But in real-life software development, multitasking is not 

uncommon. For example, employees may participate in routine tasks such as 

progress reporting and code review every day, as well as other professional tasks 

(such as code writing, database design, etc.). 

The other group of studies overcomes the above shortcomings at the cost 

of not explicitly presenting rigorous mathematical optimisation models. The 

representative research in this group comes from Alba & Chicano (2007). Based on 

the idea of Alba & Chicano (2007), many researchers have done a series of 

extended research (Xiao et al., 2013; Crawford et al., 2014; Minku et al., 2014; 

Luna et al., 2014), to make the research problem closer to the actual characteristics 

of the software project by considering the attributes of personnel wages, working 

days and holidays, skill proficiency and efficiency, and different types of human 

resources such as full-time and part-time. The algorithms involved in these studies 

are mainly meta-heuristic algorithms such as genetic algorithm (GA) (Minku et al., 

2014; Li et al., 2018), ant colony algorithm (Crawford et al., 2014), multi-objective 

GA (Luna et al., 2014) and so on. However, on the one hand, in this group of 

studies, it is difficult to guarantee the optimality of the heuristic solutions and 

evaluate the effectiveness of the heuristic algorithms without mathematical 

optimisation models. On the other hand, this group of studies tends not to explicitly 

consider resource constraints; Instead, they usually treat the workload exceeding 
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the limits of employees as overtime, which is over-simplified and can lead to 

excessive overtime.  

Therefore, this paper aims to fill the gap that the existing studies do not 

formulate and solve rigorous mathematical optimisation models for the software 

project scheduling problem with multitasking and variable durations. The main 

contributions of this paper are as follows:  

(1) We propose the software project scheduling problem with multitasking 

(SPSPM) by considering various factors in software project management practice, 

such as allowing an employee to handle multiple tasks with different skills within a 

time period, the duration of a task depends on the skill characteristics of the 

employees assigned to it and resource availability constraints. (2) We present a 

nonlinear optimisation model for the SPSPM and devise a linearisation method to 

obtain its equivalent mixed-integer linear programming model. (3) Because the 

SPSPM is NP-hard, to solve large-scale SPSPM instances efficiently, we design a 

two-stage priority rule-based heuristic algorithm and an improved GA. We propose 

a specially designed encoding and decoding method by considering the 

characteristics of the SPSPM. (4) Extensive computational experiments are 

conducted on a benchmark dataset consisting of 540 instances. The parameter 

settings of the GA are determined based on the Taguchi method for the Design of 

Experiment (DOE). The performance of our algorithms is analysed by comparing 

them with the exact solver CPLEX.  
 

2. Problem statement 

The SPSPM is described as follows. We use a directed acyclic graph 𝐺 =
(𝑉, 𝐸) to represent a software project, in which the node set 𝑉 denotes tasks in the 

project. The tasks are numbered from 0 to 𝐼, 𝑉 = {0,1,… , 𝐼}. Tasks 0 and 𝐼  are 

dummy tasks that denote the start and the end of the project, respectively. The 

duration of the dummy tasks is 0 and no resources are consumed when executing 

them. The directed arc set 𝐸 denotes the precedence relationships between tasks, 

𝐸 ⊆ 𝑉 × 𝑉. If (𝑖, 𝑗) ∈ 𝐸, there is a precedence relationship between tasks 𝑖 and 𝑗, 
and task 𝑖 is the predecessor of task 𝑗. Task 𝑗 can only start after all its predecessor 

tasks have been completed. 

The set of required skills during project execution is denoted as 𝐾. The set 

of the skills needed by task 𝑖 is marked as 𝐾𝑖. When executing task 𝑖, the required 

workload related to skill k is 𝑊𝐿𝑖𝑘 man-days, 𝑊𝐿𝑖𝑘 > 0, 𝑘 ∈ 𝐾𝑖. If 𝑘 ∉ 𝐾𝑖, then 

𝑊𝐿𝑖𝑘 = 0. 

The employee set is denoted as 𝑅. Each employee masters one or more 

skills. The set of employees equipped with skill 𝑘 is 𝑅𝑘, which means that there are 

𝑔𝑘 = |𝑅𝑘|  employees who are able to use skill 𝑘 . The binary parameter ℎ𝑟𝑘 

indicates whether employee 𝑟 ∈ 𝑅 has the skill 𝑘,  
 

ℎ𝑟𝑘 = {1 𝑖𝑓 𝑟 ∈ 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (1) 
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Every employee can deal with multiple tasks on a working day. 𝜃𝑟𝑘  is the 

maximum available workload for employee 𝑟 ∈ 𝑅𝑘  allocated to skill 𝑘  per day. 

Without loss of generality, we standardise 𝜃𝑟𝑘 as a decimal in the interval [0,1]. If 
employee 𝑟  does not master skill 𝑙 , 𝜃𝑟𝑙 = 0 . For each employee, the overall 

workload in a day should not exceed the limit 1. 

Employees need to be assigned tasks. Specifically, for each skill 𝑘 

involved in task 𝑖, at least one employee is required. To finish the task on time, the 

workload for employee 𝑟 devoted to task 𝑖 should not be less than the threshold 

𝛾𝑖𝑘 ∈ [0,1], i.e., 𝜃𝑟𝑘 ≥ 𝛾𝑖𝑘. The number of employees allocated to a task using skill 

𝑘 should not exceed 𝑔𝑘. In addition, the allocated employees are not allowed to be 

replaced after assignment.  

The start and finish times of task 𝑖 are 𝑠𝑖 and 𝑐𝑖 , respectively. The finish 

time 𝑐𝐼 of the end dummy task equals to the makespan of the project. When there 

are multiple skills involved in task 𝑖, the earliest start (latest finish) time of the 

required skill by task 𝑖 is the start time (finish time) of task 𝑖. We use 𝑠𝑖𝑘 and 𝑐𝑖𝑘 to 

indicate the start and end time of executing skill 𝑘  in task 𝑖 , respectively. The 

duration 𝑑𝑖𝑘 of each skill 𝑘 in task 𝑖 is variable, which is dependent on the working 

conditions of the assigned employees. The more the workload of employees finish 

in a day, the shorter the duration of the related task, i.e., 𝑑𝑖𝑘 = 𝑊𝐿𝑖𝑘/∑ 𝜃𝑟𝑘𝑟∈𝑅𝑖𝑘 , 

where 𝑅𝑖𝑘 is the set of employees using skill 𝑘 allocated to task 𝑖. The deadline for 

the project is 𝑇𝑚𝑎𝑥. 

The objective of the SPSPM is to minimise the human resource cost by 

generating a schedule that specifies what skills each employee should use to 

perform which tasks, as well as the start and finish time of each task, while 

satisfying the skill-task matching, precedence relationships, and the project 

deadline constraints. The project human resource cost consists of two parts, i.e., the 

fixed and the performance salary. The fixed salary is paid to employees as long as 

the project has not been completed. The total fixed salary is calculated as 

∑ 𝐶𝑟𝑐𝐼𝑟∈𝑅 , where 𝐶𝑟  is the daily fixed salary for employee 𝑟 . The performance 

salary is paid to an employee only when she/he participates in a non-dummy task. 

The total performance salary of the project is calculated as ∑ 𝐶𝑟
′𝑓𝑟𝑟∈𝑅 , where 𝐶𝑟

′  is 

the daily performance salary for employee 𝑟 , and 𝑓𝑟  is the number of days the 

employee actually works on the project. 

3. Models 

We first present a nonlinear programming model for the SPSPM. Then we 

devise a linearisation method to linearise the nonlinear model such that we can use 

exact solver (e.g., CPLEX) to solve the model. 

3.1 Non-linear programming model 

In addition to the time-related decision variables 𝑠𝑖 , 𝑐𝑖 , 𝑠𝑖𝑘 , 𝑐𝑖𝑘 , 𝑑𝑖𝑘 

mentioned earlier, we also introduce three binary assignment variables 𝑥𝑟𝑖𝑘𝑡, 𝑦𝑟𝑖𝑘 

and 𝑧𝑟𝑡. Specifically, if employee 𝑟 uses skill 𝑘 to execute task 𝑖 on the 𝑡-th day, 
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𝑥𝑟𝑖𝑘𝑡 = 1; otherwise 𝑥𝑟𝑖𝑘𝑡 = 0. If employee 𝑟 uses skill 𝑘 to execute task 𝑖, 𝑦𝑟𝑖𝑘 =
1; otherwise 𝑦𝑟𝑖𝑘 = 0. If employee 𝑟 is assigned to any non-dummy task on the 𝑡-
th day, 𝑧𝑟𝑡 = 1 ; otherwise 𝑧𝑟𝑡 = 0 . There is redundancy between these three 

variables, so we apply several extra logical restrictions on them: (a) For 𝑥𝑟𝑖𝑘𝑡 and 

𝑦𝑟𝑖𝑘, if 𝑦𝑟𝑖𝑘 = 0, which means that employee 𝑟 is not allocated to task 𝑖, then for 

any 𝑡, 𝑥𝑟𝑖𝑘𝑡 = 0; if 𝑥𝑟𝑖𝑘𝑡 = 1 on day 𝑡, which represents that employee 𝑟 has been 

assigned to task 𝑖 , then 𝑦𝑟𝑖𝑘 = 1. (b) For 𝑥𝑟𝑖𝑘𝑡  and 𝑧𝑟𝑡 , similar restrictions are 

introduced. In addition, another role for 𝑥𝑟𝑖𝑘𝑡 and 𝑧𝑟𝑡 is to associate the assignment 

variables with the time-related variables.  

Based on the above descriptions, we formulate a nonlinear programming 

model (NLP) for the SPSPM: 

(NLP) Minimise  ∑ 𝐶𝑟
′𝑓𝑟𝑟∈𝑅 + 𝐶𝑟𝑐𝐼   (2) 

 Subject to: 

 𝑠𝑗 ≥ 𝑐𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 0 (3) 

 𝑠𝑖 = min𝑠𝑖𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (4) 

 𝑐𝑖 = max𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (5) 

 𝑠𝑖𝑘 + 𝑑𝑖𝑘 = 𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (6) 

 𝑐𝐼 ≤ T𝑚𝑎𝑥  (7) 

 𝑑𝑖𝑘 ≥ 𝑊𝐿𝑖𝑘/∑ 𝜃𝑟𝑘𝑟∈𝑅 𝑦𝑟𝑖𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (8) 

 𝜃𝑟𝑘 ≥ 𝛾𝑖𝑘𝑦𝑟𝑖𝑘 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (9) 

 ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝜃𝑟𝑘𝑘∈𝐾𝑖∈𝑉 ≤ 1  ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (10) 

 𝑦𝑟𝑖𝑘 ≤ ℎ𝑟𝑘 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (11) 

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅 ≤ 𝑔𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ K, 𝑡 ∈ 𝑇 (12) 

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≥ 𝑑𝑖𝑘 −𝑀(1 − 𝑦𝑟𝑖𝑘)  ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (13) 

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≤ 𝑑𝑖𝑘 +𝑀(1 − 𝑦𝑟𝑖𝑘)  ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (14) 

 ∑ 𝑧𝑟𝑡𝑡∈𝑇 = 𝑓𝑟  ∀𝑟 ∈ 𝑅 (15) 

 𝑦𝑟𝑖𝑘 ≤ ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇   ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (16) 

 𝑀 · 𝑦𝑟𝑖𝑘 ≥ ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇   ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (17) 

 𝑧𝑟𝑡 ≤ ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝑉   ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (18) 

 𝑀 · 𝑧𝑟𝑡 ≥ ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝑉   ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (19) 

 0 ≤ 𝑠𝑖, 𝑐𝑖 ≤ T𝑚𝑎𝑥, 𝑠𝑖, 𝑐𝑖 ∈ 𝑍  ∀𝑖 ∈ 𝑉 (20) 

 0 ≤ 𝑠𝑖𝑘 , 𝑐𝑖𝑘 ≤ T𝑚𝑎𝑥, 𝑠𝑖𝑘, 𝑐𝑖𝑘 , 𝑑𝑖𝑘 ∈ 𝑍  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (21) 

 𝑥𝑟𝑖𝑘𝑡 , 𝑦𝑟𝑖𝑘 , 𝑧𝑟𝑡 ∈ {0,1} ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (22) 

 𝑓𝑟 ∈ 𝑍+ ∀𝑟 ∈ 𝑅 (23) 

In the NLP model, the objective function (2) minimises the total human 

resource cost of the project. Because the prolongation of the project makespan 

would increase the fixed cost, minimising function (2) can also indirectly achieve 

the objective of minimising the project makespan.  

The constraints of the NLP model can be divided into three groups. The 

first group (constraints (3)-(7)) contains time-related constraints. Constraints in (3) 

describe the precedence relationships. In constraints (4) and (5), the start (finish) 

time of a task is determined by the earliest (latest) time of the assigned employees 
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when executing the task. Constraints in (6) indicate the relationship between the 

duration of a task and its start/finish time. Constraint (7) is the project deadline 

constraint. 

The second group (constraints (8)-(15)) of constraints is related to 

assignment. Constraints (8) restrict the total workload devoted by the assigned 

employees should not be less than the required workload 𝑊𝐿𝑖𝑘 of the task, which 

also influences the duration 𝑑𝑖𝑘. Note that although the inequality sign is used in 

constraints (8), the inequality sign can also achieve the purpose to minimise 𝑑𝑖𝑘, 

because the objective function also indirectly minimises the project makespan. 

Constraints (9) are the minimum workload constraints. The workload of an 

assigned employee 𝑟 should not be less than the threshold 𝛾𝑖𝑘. Constraints (10) are 

the maximum workload constraints. The total workload per person per day cannot 

exceed 1. Constraints (11) mean that employees are not able to use the skills that 

they do not have. Constraints (12) represent the limits of the number of employees. 

Constraints (13) and (14) guarantee that the employees are not be replaced after 

assignment, and 𝑀 is a sufficiently large positive integer. Constraints (15) are used 

to calculate the number of actual working days of employee 𝑟. 

The third group (constraints (16)-(19)) of constraints describe the logical 

relationships among the assignment variables. Constraints (16) and (17) reflect the 

logical relationships between 𝑥𝑟𝑖𝑘𝑡 and 𝑦𝑟𝑖𝑘. Constraints (18) and (19) describe the 

relationships between 𝑥𝑟𝑖𝑘𝑡 and 𝑧𝑟𝑡. Finally, constraints (20)-(23) define the range 

of the decision variables. In addition, it can be seen that the constraints (4), (5) and 

(8) are nonlinear. 

3.2 Model linearisation 

In this subsection, we linearise the model NLP. For the nonlinear 

constraints, the constraints in (8) are the most difficult to linearise. We tackle this 

problem by replacing 𝑑𝑖𝑘 in the constraint with auxiliary variables to form a linear 

constraint. 

First, we sum the daily workload devoted by employees using skills in a 

task, and obtain the equivalent constraints of (8): 

∑ ∑ 𝑥𝑟𝑖𝑘𝑡 ·𝑡∈𝑇 𝜃𝑟𝑘𝑟∈𝑅 ≥ 𝑊𝐿𝑖𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (24) 

Then, to replace 𝑑𝑖𝑘 in constraints (6), (13) and (14), we introduce a binary 

auxiliary variable 𝑒𝑖𝑘𝑡 . If skill 𝑘  of task 𝑖  is executed on the 𝑡-th day, 𝑒𝑖𝑘𝑡 = 1; 

otherwise 𝑒𝑖𝑘𝑡 = 0 . According to the above definition, there are logical 

relationships between 𝑒𝑖𝑘𝑡  and 𝑥𝑟𝑖𝑘𝑡 : if 𝑒𝑖𝑘𝑡 = 0, which means that task 𝑖  is not 

executed by any employee with skill 𝑘 on the 𝑡-th day, then for any employees 𝑟, 

𝑥𝑟𝑖𝑘𝑡 = 0. If for a day 𝑡, 𝑥𝑟𝑖𝑘𝑡 = 1, which means that employee 𝑟 is assigned to 

task 𝑖, then 𝑒𝑖𝑘𝑡 = 1. These logical restrictions can be quantified as follows: 

𝑒𝑖𝑘𝑡 ≤ ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅   ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖, 𝑡 ∈ 𝑇 (25) 

𝑀 · 𝑒𝑖𝑘𝑡 ≥ ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅   ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖, 𝑡 ∈ 𝑇 (26) 

Actually, 𝑒𝑖𝑘𝑡 converts the original 𝑑𝑖𝑘 into a set of binary variables: 

𝑑𝑖𝑘 = ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇   ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (27) 
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According to (27), constraints (6), (13) and (14) can be transformed 
into a new set of equivalent linear constraints:  

∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 = 𝑐𝑖𝑘 − 𝑠𝑖𝑘 + 1  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (28) 

∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≥ ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 −𝑀(1 − 𝑦𝑟𝑖𝑘)  ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (29) 

∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≤ ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 +𝑀(1 − 𝑦𝑟𝑖𝑘)  ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (30) 

Finally, the following auxiliary constraints ensure that there are no 

interruptions during project execution: 

𝑠𝑖𝑘 ≤ 𝑡 · 𝑒𝑖𝑘𝑡 +𝑀(1 − 𝑒𝑖𝑘𝑡)  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (31) 

𝑐𝑖𝑘 ≥ 𝑡 · 𝑒𝑖𝑘𝑡  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (32) 

Based on the above linearisation method, we obtain the mixed-integer 

linear programming model (MILP) that is equivalent to model NLP:  

(MILP) Minimise  (2) 

Subject to: 

(3), (7), (9)-(12), (15)-(23), (24)-(32) 

𝑠𝑖 ≤ 𝑠𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (33a) 

𝑠𝑖 ≥ 𝑠𝑖𝑘 −𝑀 · 𝑢𝑖𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (33b) 

∑ 𝑢𝑖𝑘𝑘∈𝐾𝑖 = |𝐾| − 1  ∀𝑖 ∈ 𝑉 (33c) 

𝑢𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ V, 𝑘 ∈ 𝐾 (33d) 

𝑐𝑖 ≥ 𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (34a) 

𝑐𝑖 ≤ 𝑐𝑖𝑘 +𝑀 · 𝑣𝑖𝑘  ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (34b) 

∑ 𝑣𝑖𝑘𝑘∈𝐾𝑖 = |𝐾| − 1   ∀𝑖 ∈ 𝑉 (34c) 

𝑣𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ V, 𝑘 ∈ 𝐾 (34d) 

where the linear constraints (33) and (34) correspond to constraints (4) and (5), and 

𝑢𝑖𝑘 , 𝑣𝑖𝑘  (𝑖 ∈ V, 𝑘 ∈ 𝐾) are binary auxiliary variables. 

Proposition 1. The SPSPM is NP-hard. 

Proof. Consider a special case of the SPSPM: The threshold of workload is 

ignored, i.e., 𝛾𝑖𝑘 are set to 0, and the fixed salary for every employee is set to 1/
|R|. This special case has been studied by Xiao et al. (2013) and proved to be NP-

hard. Therefore, as a generalisation, the SPSPM is NP-hard. ∎ 

4. Algorithms 

Since the SPSPM is NP-hard, to solve the large-scale SPSPM instances 

efficiently, we design a two-stage priority rule-based heuristic algorithm and an 

improved GA in this section.  

4.1 Two-stage priority rule-based heuristic algorithm 

The pseudocode of our two-stage priority rule-based heuristic algorithm is 

shown in Algorithm 1. In Algorithm 1, tasks are first scheduled, and then 

employees are assigned. Specifically, (a) the scheduling order of tasks using the 

minimum total workload priority rule (Browning & Yassine, 2010); (b) the 

assignment order of employees is determined according to the rule that the 

maximum committable workload of the employees for a certain skill is from 

highest to lowest. Finally, the start time and assignment for each task can be 

obtained. 
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Algorithm 1. Two-stage priority rule-based heuristic algorithm 
 

Step 1: Initialisation.  

Add dummy task 0 to the completed task set 𝐶𝑔. The rest tasks are added to the unschedulable task 

set 𝑆𝑔. The schedulable task set 𝐷𝑔 is set to empty. 

Step 2: Select a task to schedule.  

If 𝐷𝑔 is empty and the number of tasks in 𝐶𝑔 is less than the total number of tasks, then the tasks 

whose predecessor tasks have been completed are chosen from 𝑆𝑔 and appended into 𝐷𝑔. 

If 𝐷𝑔 is not empty, then the task with the minimum workload is selected from 𝐷𝑔 and denoted as 𝑖∗.  
Step 3: Assign employees for the selected task. 

Step 3.1: For each skill 𝑘∗  involved in task 𝑖∗ , calculate the total amount of workload that all 

employees can put in it, i.e., 𝑒𝑓𝑓_𝑠𝑢𝑚𝑖∗𝑘∗ = ∑ 𝜃𝑟𝑘∗𝑟∈𝑅 , 𝜃𝑟𝑘∗ ≥ 𝛾𝑖∗𝑘∗ .  
Step 3.2: For the skill, assign employees with the maximum 𝑒𝑓𝑓_𝑠𝑢𝑚𝑖∗𝑘∗. 

Step 4: Determine the start time 𝒔𝒊∗𝒌∗ of skill 𝒌∗ in task 𝒊∗.  
Step 4.1: Assign all available employees with skill 𝑘∗ to the task 𝑖∗, 𝑑𝑖∗𝑘∗ = ⌈𝑊𝐿𝑖∗𝑘∗ 𝑒𝑓𝑓𝑠𝑢𝑚𝑖∗𝑘∗

⁄ ⌉ 
Step 4.2: The start time 𝑠𝑖∗𝑘∗ of executing task 𝑖∗ with skill 𝑘∗ is not supposed to be earlier than the 

finish time 𝑐𝑖∗
𝑝𝑟𝑒

 of 𝑖∗’s predecessor tasks. And the assigned employees should not be occupied 

by other tasks (the earliest available time for the assigned employees is denoted as 𝑡𝑖∗𝑘∗
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒). 

Therefore, the start time for a skill to be used is 𝑠𝑖∗𝑘∗ = max {𝑐𝑖∗
𝑝𝑟𝑒

, 𝑡𝑖∗𝑘∗
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒}, the finish time is 

𝑐𝑖∗𝑘∗ = 𝑠𝑖∗𝑘∗ + 𝑑𝑖∗𝑘∗ − 1. 

Step 5: Decide the start time 𝑠𝑖∗  of task 𝒊∗. 
Repeat steps 3 and 4 until all skills in task 𝑖∗ are assigned to employees. Then, move task 𝑖∗ from 

𝐷𝑔 to 𝐶𝑔. For task 𝑖∗, 𝑠𝑖∗(𝑐𝑖∗) is obtained according to Equations (4)-(5). 

Step 6: Repeat steps 2 to 5 until the number of tasks in 𝑪𝒈 equals the total number of tasks. 

 

4.2 Improved genetic algorithm 

To solve the SPSPM more effectively, we also develop an improved GA. 

GA is a classical population-based meta-heuristic algorithm, which has been 

widely applied in project scheduling (Alba & Chicano, 2007; Li et al., 2018).  

4.2.1 Encoding of a schedule  

A schedule is encoded into a chromosome 𝑐ℎ = {𝑅𝐾, 𝑅𝐿, 𝑆𝐿, 𝐷𝑀}, where 

(a) the random key vector 𝑅𝐾 = (𝑎0, 𝑎1, … , 𝑎𝑖, … , 𝑎𝐼) is used to indicate the order 

of tasks to be scheduled, where 𝑎𝑖 ∈ [0,1] represents the priority value of task 𝑖. (b) 

The employee vector 𝑅𝐿 = (𝑟0, 𝑟1, … , 𝑟𝑖, … , 𝑟𝐼)  is used to indicate the order of 

employees assigned to each task, where 𝑟𝑖 is an employee list for task 𝑖, and there 

are |𝐾| sub-lists in 𝑟𝑖, the 𝑘-th sub-list is the order of employees to be assigned for 

skill 𝑘 (𝑘 = 1,2, … , 𝐾). If a skill is not involved in the task, the corresponding sub-

list is empty. (c) In the skill vector 𝑆𝐿 = (𝑆𝐾0, 𝑆𝐾1, … , 𝑆𝐾𝑖, … , 𝑆𝐾𝐼) , 𝑆𝐾𝑖 =
(𝑠𝑘1, 𝑠𝑘2, … , 𝑠𝑘𝐾𝑖) is the order of |𝐾𝑖| skills involved in task 𝑖. (d) The employee 

demand vector 𝐷𝑀 = (𝑑𝑚0, 𝑑𝑚1, … , 𝑑𝑚𝑖 , … , 𝑑𝑚𝐼) is used to show the number of 

employees assigned to task 𝑖 , where 𝑑𝑚𝑖 = (𝑑𝑚𝑖𝑑1, 𝑑𝑚𝑖𝑑2, … , 𝑑𝑚𝑖𝑑|𝐾|)  is a 

|𝐾|-dimension vector and the value of each element is a decimal between 0 and 1 

indicating the proportion of the number of employees assigned to a skill in task 𝑖 to 

the total number of available employees.  
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4.2.2 Decoding  

We design a decoding procedure to transform a chromosome into a 

schedule (Algorithm 2). In Algorithm 2, we first initialise the parameters. Next, at 

the start of each iteration, we update 𝐷𝐿. If 𝐷𝐿 is not empty, for each task 𝑖∗ in 𝐷𝐿, 

we obtain the arrangement list ( SkillList𝑖∗ ). Then, we choose available 

resource_need employees according to the preferred employee priority assignment 

method (Algorithm 3) (Line 6-11). After that, we update 𝑊𝐿𝑖∗𝑘∗  based on the 

workload completed by the assigned employees (𝑅𝑖∗k∗
𝑎𝑠𝑠 ) (Line 11). When 𝑊𝐿𝑖∗k∗ ≤

0 , the demand for skill 𝑘∗  in task 𝑖∗  has been satisfied (Line 12). If all the 

requirements of skills in task 𝑖 are satisfied, we update  𝐷𝐿 and  𝐶𝐿 (Lines 15-16).  

 

Algorithm 2. Decoding procedure 
 

Input: Project parameters, 𝑅𝐾, 𝑅𝐿, 𝑆𝐿, 𝐷𝑀 

Output: 𝑥𝑟𝑖𝑘𝑡, s𝑖𝑘, c𝑖𝑘  

1 Initialise: 𝐶𝐿, 𝐷𝐿, 𝑆𝐿, 𝑥𝑟𝑖𝑘𝑡, 𝑠𝑖𝑘 , 𝑐𝑖𝑘, 𝑡 ← 0 

2 While 𝑡 < Tmax: 

3 If  len(𝐷𝐿) == 0 : 

4 From 𝑆𝐿, select tasks whose predecessors have been added to 𝐶𝐿, and add them to 𝐷𝐿 in the 

order of 𝑆𝐿 

5   Else 

6 For 𝑖∗ in 𝐷𝐿: 

7 SkillList𝑖∗ ← 𝑆𝐾𝑖∗ in 𝑆𝐿  
8 For 𝑘∗ in SkillList𝑖∗: 
9 resource_need ← 𝑐𝑒𝑖𝑙(𝑑𝑚𝑖∗𝑑𝑘∗ ∗ |𝑅𝑖∗𝑘∗|) , where 𝑅𝑖∗𝑘∗ = {𝑟|𝜃𝑟𝑘∗ ≥ 𝛾𝑖∗𝑘∗ , 𝑟 ∈ 𝑅} . 

R_List𝑖∗𝑘∗ ← r𝑖∗[𝑘
∗] in 𝑅𝐿 

10                 Based on Algorithm 3, select up to resource_need employees from R_List𝑖∗𝑘∗, update 

s𝑖∗𝑘∗ and 𝑥𝑟𝑖∗𝑘∗𝑡 
11 Calculate the rest workload of 𝑊𝐿𝑖∗k∗  after the 𝑡 -th day, i.e.,𝑊𝐿𝑖∗𝑘∗ ← 𝑊𝐿𝑖∗𝑘∗ −

∑ 𝜃𝑟𝑘∗𝑟∈𝑅𝑖∗k∗
𝑎𝑠𝑠 , ∑ 𝜃𝑟𝑘∗𝑟∈𝑅𝑖∗k∗

𝑎𝑠𝑠  

12 If 𝑊𝐿𝑖∗k∗ ≤ 0: c𝑖∗𝑘∗ ← t  End if 

13 End for 

14 End for 

15 Move the finished tasks in 𝐷𝐿 to C𝐿  
16 t ← 𝑡 + 1 

17 End if 

18 End While 

 

We use an example to explain Algorithm 3. As shown in Figure 1(a), the 

preferred employee for task 𝐴 is 𝑅1, but 𝑅1 is occupied at 𝑡0, thus employee 𝑅0 

performs the task; at time 𝑡1, 𝑅1 returns to the idle state again, and if more than 

70% of the workload of task 𝐴 has been completed, the reassignment of 𝑅1 to the 

task is abandoned (Figure 1(b)); otherwise, reassign 𝑅1 to participate in task 𝐴 and 

restore the workload required for task 𝐴 so that it starts at time 𝑡1 (Figure 1(a)).  
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Algorithm 3. Preferred employee priority assignment method  
 

1 For 𝑟 in R_List𝑖∗𝑘∗: 
2 If resource_need >0: 

3 If r is available in day t: 

4 If day t is the first day to process skill 𝑘∗ of activity 𝑖∗: 
5 resource_need ← resource_need -1 

6 𝑥𝑟𝑖∗𝑘∗𝑡 ← 1  

7 update the rest workload of skill 𝑘∗ of activity 𝑖∗ and available efficiency of resource r 

at day t 

8 𝑠𝑖∗𝑘∗ ← 𝑡   
9 Else: 

10 If the ranking of employee𝑟 is higher than that of assigned employee 𝑟′:  
11 If the rest workload of skill 𝑘∗ of activity 𝑖∗ is more than 30% of original workload: 

12 Reset 𝑥𝑟′𝑖∗𝑘∗𝑡′  (𝑟
′ ∈ 𝑅, 𝑡′ ∈ [0, 𝑡 − 1]) and restore the 𝑊𝐿𝑖∗k∗ to initial value 

13 Repeat line 5 to 8 

14 End if  

15 Else: 

16 Repeat line 5 to 7 

17 End if 

18 End if 

19 End if 

20 End if 

21 End for 
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Figure 1. Improvement of the decoding procedure 

 

4.2.3 Population initialisation 

There are 𝑃𝑂𝑃 individuals in the population. In the initial population, the 

random key vectors are generated randomly. The employee vectors are generated 

based on two heuristic methods, and each heuristic method generate 𝑃𝑂𝑃 2⁄  

individuals: (a) The employees are ranked according to the ascending order of their 

performance salary. (b) The employees are ranked in the descending order 

indicated by their cost performance (for skill 𝑘, the cost performance of employee 

𝑟 is the ratio of its performance salary 𝐶𝑟
′  to its maximum available workload 𝜃𝑟𝑘).  

For the skill vectors, the skills in a task are ranked on the descending order 

of 𝑒𝑓𝑓𝑠𝑢𝑚𝑖𝑘
(𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖). For the employee demand vectors, in the 𝑛-th (𝑛 =

1,2…𝑃𝑂𝑃) individual, all the non-zero random keys in 𝐷𝑀 are set to 𝑛 𝑃𝑂𝑃⁄ . It 

should be noted that if 𝑘 ∈ 𝐾𝑖, 𝑑𝑚𝑖𝑑𝑘 ≠ 0. 
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4.2.4 Crossover, mutation and selection operators 

We randomly pair the individuals in the population to form 𝑃𝑂𝑃/2 pairs of 

parent individuals. For paired individuals, the crossover and mutation operators are 

applied to 𝑅𝐾 and 𝐷𝑀; 𝑆𝐿 and 𝑅𝐿 are directly copied to their child individuals. 

In crossover operator, a random number 𝑟 ∈ (0,1) is generated first. If 𝑟 ≤
𝑅𝑐 (crossover probability), the average value of the values on 𝑅𝐾 and 𝐷𝑀 of the 

parent individuals is taken as the corresponding value of the child individual. 

Otherwise, the parent individuals will conduct an average calculation with two 

special chromosomes, of which all random key values on 𝑅𝐾 and 𝐷𝑀 are 1 or 0.  

After crossover, for the child individuals, the probability of mutation of 

each gene is 𝑅𝑚. If a gene is selected to mutate, we randomly choose a position on 

𝑅𝐾  and change its value to a newly generated random decimal between (0,1). 

Then, we choose a non-zero position on 𝐷𝑀 and change its value in the same way 

as above.  

After crossover and mutation, we update the population. We first choose 

the best 𝑅𝑒 × 𝑃𝑂𝑃 individuals from the parent population and copy them directly 

to the new population 𝑐ℎ′′, where 𝑅𝑒 is the rate of the elite. Then, we obtain the 

rest individuals in 𝑐ℎ′′ by the following way: we sample 𝑃𝑂𝑃 − 𝑅𝑒 × 𝑃𝑂𝑃 times. 

In each sampling process, two individuals are randomly selected from 𝑐ℎ′, and the 

individual with the lower objective function value is added to the population 𝑐ℎ′′.  

5. Computational experiments 

The proposed algorithms have been implemented in Python 3.7. Our 

computational experiments are conducted on a computer with Intel Core i5 3.20 

GHz CPU and Windows 7 64-bit.  

5.1 Benchmark dataset 

Because there is no suitable dataset for our problem at present, we generate 

the benchmark dataset based on full-factorial experimental design. We use the 

project scheduling problem instance generator RanGen (Demeulemeester et al., 

2003) to produce the project networks. There are two parameters in RanGen that 

define the structure of the network: the number of tasks and the order strength 

(OS). The OS is the ratio between the number of precedence relationships in the 

network and the theoretically maximum number of precedence relationships. The 

network with a higher OS value has a higher network density. We specify various 

levels for the number of activities, OS, the number of employees, and the number 

of skills (Table 1), and generate five instances for each parameter combination. 

Therefore, we obtain a total of 4 × 3 × 3 × 3 × 5 = 540 project instances. 
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The number of skills mastered by each employee is sampled from the 

discrete interval [1, ⌈|K|/2⌉]. The maximum devoted workload for employee 𝜃𝑟𝑘 is 

chosen randomly from the set {0.25, 0.5, 0.75,1.0}. The number of skills involved 

in each task is also sampled from the discrete interval [1, ⌈|K|/2⌉]. The workload 

𝑊𝐿𝑖𝑘 required by each skill is chosen from the set {3,4,5}. The threshold 𝛾𝑖𝑘  of 

workload is calculated by 1/4  multiplying a number chosen from the discrete 

interval [1,4 × 𝜃𝑟𝑘
∗ ], where 𝜃𝑟𝑘

∗ = max𝑟 𝜃𝑟𝑘. This approach ensures that there is at 

least an employee who meets the threshold requirements. For the fixed salary and 

performance salary of every employee, they are randomly chosen from different 

intervals shown in Table 2 based on the employee’s average available workload 

𝜃𝑟 = ∑ 𝜃𝑟𝑘𝑘∈𝐾𝑟 /|𝐾𝑟|, where 𝐾𝑟 is the skill set mastered by employee 𝑟. 

We use CPLEX 12.9 to solve the instances. The maximum time to solve an 

instance is limited to 600 seconds. The value of 𝑀 in model MILP is set to 1 ×
108 . Based on the calculation results, we divide the benchmark dataset into 3 

subsets (Table 3), i.e., SETO contains instances that have been solved optimally, 

SETF contains instances with only feasible 

solutions, and SETI contains instances whose feasible solutions are not obtained. 

  

Table 1. Parameter settings in the 

benchmark dataset 

Parameter Values 

Number of tasks (I) 5 10 20 30 

Order strength (OS) 0.3 0.5 0.7  

# of employees (|𝑅|) 4 6 8  

# of skills (|𝐾|) 3 5 7  

 

Table 3. Number of instances in 

different subdatasets 
# of tasks SETO SETF SETI 

5 105 28 2 
10 16 50 69 
20 0 0 135 
30 0 0 135 

Sum 121 78 341 

 

Table 4. Levels of parameter values 
Levels POP 𝑅𝑐 𝑅𝑚 𝑅𝑒 

1 50 0.5 0.15 0.04 

2 100 0.7 0.35 0.08 

3 200 0.9 0.55 0.12 

 

Table 2. Employee’s average available workload 

and salaries 
Average devoted 

workload 

Daily fixed 

salary 

Daily performance 

salary  

𝜃𝑟 ≥ 0.75 [31,40] [61,70] 

0.75 > 𝜃𝑟 ≥ 0.5 [21,30] [51,60] 

𝜃𝑟 < 0.5 [11,20] [41,50] 
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5.2 Parameter settings 

We applied the Taguchi method of DOE based on 𝑆𝐸𝑇𝑂 to determine the 

best values of parameters in the proposed GA. There are four parameters in the 

GA: the size of the population (POP), the probability of crossover (𝑅𝑐 ), the 

probability of mutation (𝑅𝑚) and the rate of elite (𝑅𝑒). As shown in Table 4, we set 

3 levels for each parameter. 

The average response variable (ARV) is defined as follows: 

ARV = 
∑ [(𝑜𝑏𝑗𝑖−𝑜𝑝𝑡𝑖)/𝑜𝑝𝑡𝑖]𝑖∈SETo

|SETo|
 (35) 

where 𝑜𝑝𝑡𝑖 is the optimal objective function value of the 𝑖-th instance obtained by 

CPLEX, 𝑜𝑏𝑗𝑖 is the objective value calculated by the GA. We choose the 𝐿9(3
4) 

orthogonal table, and the termination condition of the GA is to generate up to 1,000 

schedules. The orthogonal array and values of ARV are shown in Table 5. Table 6 

displays the range of the ARV values as well as the significant rank of each factor. 

Figure 2 describes the changing trend of the ARV. It can be seen that the parameter 

that has the most impact on the GA is the probability of mutation (𝑅𝑚), the second 

one is the rate of elite (𝑅𝑒 ), 

followed by the size of population (POP) and the probability of crossover (𝑅𝑐). 

Therefore, the final parameter settings are POP= 50 (level 1), 𝑅𝑐 = 0.7 (level 2), 

𝑅𝑚 = 0.55 (level 3) and 𝑅𝑒 = 0.12  (level 3). These parameter settings will be 

adopted in the following experiments. 

 

Table 6. Average ARV and rank for each factor 

Levels POP 𝑅𝑐 𝑅𝑚 𝑅𝑒 

1 0.0273  0.0304  0.0321  0.0319  

2 0.0289  0.0290  0.0312  0.0289  

3 0.0307  0.0296  0.0256  0.0281  

Range 0.0034  0.0014  0.0065  0.0038  

Rank 3 4 1 2 

Table 5. Orthogonal array and values of ARV 

No. 
Factors 

ARV 
POP 𝑅𝑐 𝑅𝑚 𝑅𝑒 

1 1 1 1 1 0.0327  

2 1 2 2 2 0.0275  

3 1 3 3 3 0.0218  

4 2 1 2 3 0.0297  

5 2 2 3 1 0.0264  

6 2 3 1 2 0.0306  

7 3 1 3 2 0.0287  

8 3 2 1 3 0.0329  

9 3 3 2 1 0.0365  

 

 
Figure 2. GA factor level trend 
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5.3 Main results 
 

We apply our two-stage priority rule-based heuristic algorithm and GA to 

solve the benchmark dataset. For each instance, we use the GA to obtain three 

solutions and calculate the average objective function value as the final results of 

the GA. The termination condition of our GA is to generate up to 1,000 schedules. 
For the instances in SETO and SETF, we use the average relative deviation 

𝐴𝑅𝐷(𝑀, 𝑆𝐸𝑇) =  
∑ [(𝑜𝑏𝑗𝑖

𝑀−𝑜𝑏𝑗𝑖
𝐶𝑃𝐿𝐸𝑋)/𝑜𝑏𝑗𝑖

𝐶𝑃𝐿𝐸𝑋]𝑖∈SET

|𝑆𝐸𝑇|
× 100%, (𝑀 ∈ {𝐺𝐴, 𝐻𝐴},

𝑆𝐸𝑇 ∈ {𝑆𝐸𝑇𝑂, 𝑆𝐸𝑇𝐹})  from the results obtained by CPLEX to evaluate the 

performance of our algorithms, where 𝑜𝑏𝑗𝑖
𝐺𝐴  and 𝑜𝑏𝑗𝑖

𝐻𝐴  are the values of the 

objective function of the 𝑖-th instance calculated by the GA and the two-stage 

priority rule-based heuristic algorithm respectively, and 𝑜𝑏𝑗𝑖
𝐶𝑃𝐿𝐸𝑋  is the best 

objective value obtained by CPLEX. For the instances in SETI, we compare the 
results of the GA with the priority rule-based heuristic algorithm, and the metric 

𝐼𝑚𝑝 =  
∑ [(𝑜𝑏𝑗𝑖

𝐻𝐴−𝑜𝑏𝑗𝑖
𝐺𝐴)/𝑜𝑏𝑗𝑖

𝐻𝐴]𝑖∈SET𝐼

|SET𝐼|
× 100%  is adopted to measure the 

improvement of the GA compared with the priority rule-based heuristic algorithm. 
The average CPU times to solve each instance are used to evaluate the efficiency of 
the algorithms. 

Table 7 shows the results on SETO. From Table 7, we can see that our GA 
performs well. The average gap to the optimal solutions is only 2.37%. In most cases, 
the CPU times of our GA are less than those of CPLEX. Our GA is far better than the 
priority rule-based heuristic algorithm. Table 8 displays the results on SETF, from 
which we can see that our GA obtains better solutions than CPLEX (the average gap 
is negative, which means that our GA is better) and spends less CPU times. The 
average gap between the heuristic algorithm and CPLEX is 22.04%. Table 9 gives 
the results on SETI, showing that the proposed GA is significantly better than the 
heuristic algorithm. 

In summary, for the easy instances, our GA is able to get solutions that are 
very close to the optimal solutions in a short time. For the difficult instances, the 
performance of our GA is far better than CPLEX and our priority rule-based heuristic 
algorithm, and the GA is able to obtain satisfying solutions in a short time. In 
addition, the quality of the solution calculated by our GA is higher than that of our 
priority rule-based heuristic algorithm. The proposed GA is effective and efficient. 

 

Table 7. The computational results on SETO 

Number of tasks OS 
ARD  CPU(s) 

GA HA  GA CPLEX 

5 

0.3 2.19% 36.12%  90.41  64.95  

0.5 2.02% 30.54%  93.36  144.95  

0.7 1.73% 25.67%  93.43  141.78  

10 

0.3 4.37% 36.57%  95.03  365.68  

0.5 7.12% 51.16%  94.15  296.72  

0.7 3.99% 32.63%  98.43  277.32  

Average 2.37% 31.52%  93.11  145.99  
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Table 8. The computational results on SETF 

Number of tasks OS 
ARD  CPU (s) 

GA HA  GA CPLEX 

5 

0.3 -8.36% 25.40%  97.38  600.19  

0.5 -8.31% 6.91%  100.25  600.70  

0.7 -9.72% 11.90%  104.97  600.11  

10 

0.3 -5.19% 28.30%  95.11  600.83  

0.5 -4.57% 23.30%  97.69  600.19  

0.7 -8.83% 17.46%  103.16  600.09  

Average -7.10% 22.04%  98.93  600.35  
 

 

Table 9. The computational results on SETI 

Number of tasks OS Average 𝐼𝑚𝑝 of GA CPU times (s) of GA 

5 
0.5 25.21% 101.16  

0.7 14.82% 107.81  

10 

0.3 27.43% 105.99  

0.5 25.16% 113.36  

0.7 22.42% 119.31  

20 

0.3 23.78% 125.78  

0.5 22.86% 136.28  

0.7 22.04% 161.31  

30 

0.3 20.97% 155.28  

0.5 22.14% 175.73  

0.7 19.47% 212.95  

Average 22.51% 151.10  

 

5.4 Sensitivity analysis 

We further investigate the factors that influence the GA. First, from Tables 

7-9, we can see that the OS value does not have a significant impact on the results, 

which means that the GA is robust for the different number of precedence 

relationships in a project. 

Then, we consider the impact of the number of skills |𝐾| and the number 

of employees |𝑅| in different datasets (see Figure 3). Note that in Figure 3, some 

points/lines are not displayed because of the lack of corresponding combination 

instances in the dataset. We can find from Figure 3 that as the number of skills 

increases, the performance of the GA becomes worse, which is more significant in 

small-scale instances. For the number of employees, in the small-scale instances, 

the impact of the GA is weakened as |𝑅| increases. But in large-scale instances, this 

phenomenon is the opposite, which means that our GA is more suitable for large-

scale software project scheduling problems. 
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Figure 3. Impacts of different factors on the GA 

 

6. Conclusions and future research 

Taking into account multitasking and variable task durations in software 

project, we investigate the SPSPM. For this problem, we formulate a nonlinear 

programming model, which is then transformed into an equivalent mixed-integer 

linear programming model. To effectively solve the NP-Hard SPSPM, a two-stage 

priority rule-based heuristic algorithm and an improved GA are proposed. A 

benchmark dataset consisting of 540 project instances is generated by using full-

factorial experimental design. Based on the larger-scale computational 

experiments, we analyse the performance of our proposed algorithms by comparing 

the them with CPLEX, which reveals the effectiveness and advantages of our GA. 

The sensitivity analysis also indicates that our GA is robust and that our GA is 

especially suitable for solving large-scale instances.  

Future work will further develop more efficient algorithms for the SPSPM. 

It would also be interesting to consider more realistic factors faced by software 

project management, such as uncertainty (Li et al., 2020), resource leveling (Li et 

al., 2021), and preemption (Liu et al., 2019).  
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