

Economic Computation and Economic Cybernetics Studies and Research, Issue 1/2023; Vol. 57

__

 153

Associate Professor Hongbo Li, PhD

E-mail: ishongboli@gmail.com, hongbo_li@t.shu.edu.cn

School of Management, Shanghai University, China

Hanyu Zhu, Master's Degree

E-mail: zhuhanyu1101@qq.com

School of Management, Shanghai University, China

Linwen Zheng, Master student

E-mail: linwenzheng@126.com (Corresponding author)

School of Management, Shanghai University, China

Associate Professor Yinbin Liu, PhD

E-mail: yinbinliu@126.com (Corresponding author)

School of Management, Shanghai University, China

SOFTWARE PROJECT SCHEDULING WITH MULTITASKING

Abstract: In software development projects, employees tend to switch

between various tasks within a time period. In addition, the task duration usually

depends on the number of the allocated employees and their skill levels. We

investigate the software project scheduling problem with multitasking and variable

durations (SPSPM). We present a non-linear optimisation model that is then

linearised into an equivalent mixed-integer linear programming model. To

efficiently solve the NP-hard SPSPM, we design a two-stage priority rule-based

heuristic algorithm and an improved genetic algorithm (GA). Extensive computational

experiments are conducted on a benchmark dataset consisting of 540 project instances.

The parameter settings of the GA are determined based on the Taguchi method for the
Design of Experiment. The computational results obtained by comparing our

algorithms with the exact solver CPLEX reveal that our GA is effective and

competitive.
Keywords: Software project; Multitasking; Project scheduling; Integer

programming; Meta-heuristic

JEL Classification: M11, C44, C61

1. Introduction

The advancement of emerging information technologies such as artificial

intelligence has provided new development opportunities for the software industry.

In the meantime, a large number of software projects still suffer from low success

rates. The CHAOS Report shows that only 29% of the investigated projects can be

delivered on time within budget and customer requirements (Standish group, 2015).

Administrator
Typewritten Text
DOI: 10.24818/18423264/57.1.23.10

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

154

The cause of the failures of many software development projects can be

traced to the lack of effective scheduling (PMI, 2016). Software project scheduling

aims to determine the start time of each task and who performs which task on the

premise of satisfying task precedence relations, skill requirements, and resources

availability constraints, such that a reasonable match between the employees with

certain skills and tasks that require these skills forms, thereby minimising the

project performance (e.g., project makespan, cost, etc.).

The existing studies on software project scheduling can be classified into

two groups. The studies in the first group rely on mathematical optimisation

models. Kazemipoor et al. (2013) study the integer programming and goal

programming models for the multi-skill IT project scheduling problem,

respectively. Huang et al. (2009) adopted the linear programming model for the

personnel allocation problem. For the integrated optimisation problem of personnel

assignment and scheduling, researchers have studied the integer programming

model (Maenhout & Vanhoucke, 2017; Kolisch & Heimerl, 2012) and constraint

programming (Hauder et al., 2020). Li & Womer (2009) propose an integer

programming model and a Benders decomposition algorithm for software project

scheduling. However, in the group of studies, it is usually assumed that the

duration of the task is fixed and is not dependent on the number and skill levels of

the personnel assigned to the tasks. Such assumptions are relatively strict, because

the different number of employees assigned to the task and the different skill levels

of the employees lead to differences in the duration of the task, which in turn will

affect the cost of the project. In addition, the group of studies usually ignore

multitasking, i.e., they assume that an employee can only engage in one task within

a period of time. But in real-life software development, multitasking is not

uncommon. For example, employees may participate in routine tasks such as

progress reporting and code review every day, as well as other professional tasks

(such as code writing, database design, etc.).

The other group of studies overcomes the above shortcomings at the cost

of not explicitly presenting rigorous mathematical optimisation models. The

representative research in this group comes from Alba & Chicano (2007). Based on

the idea of Alba & Chicano (2007), many researchers have done a series of

extended research (Xiao et al., 2013; Crawford et al., 2014; Minku et al., 2014;

Luna et al., 2014), to make the research problem closer to the actual characteristics

of the software project by considering the attributes of personnel wages, working

days and holidays, skill proficiency and efficiency, and different types of human

resources such as full-time and part-time. The algorithms involved in these studies

are mainly meta-heuristic algorithms such as genetic algorithm (GA) (Minku et al.,

2014; Li et al., 2018), ant colony algorithm (Crawford et al., 2014), multi-objective

GA (Luna et al., 2014) and so on. However, on the one hand, in this group of

studies, it is difficult to guarantee the optimality of the heuristic solutions and

evaluate the effectiveness of the heuristic algorithms without mathematical

optimisation models. On the other hand, this group of studies tends not to explicitly

consider resource constraints; Instead, they usually treat the workload exceeding

Software Project Scheduling with Multitasking

155

the limits of employees as overtime, which is over-simplified and can lead to

excessive overtime.

Therefore, this paper aims to fill the gap that the existing studies do not

formulate and solve rigorous mathematical optimisation models for the software

project scheduling problem with multitasking and variable durations. The main

contributions of this paper are as follows:

(1) We propose the software project scheduling problem with multitasking

(SPSPM) by considering various factors in software project management practice,

such as allowing an employee to handle multiple tasks with different skills within a

time period, the duration of a task depends on the skill characteristics of the

employees assigned to it and resource availability constraints. (2) We present a

nonlinear optimisation model for the SPSPM and devise a linearisation method to

obtain its equivalent mixed-integer linear programming model. (3) Because the

SPSPM is NP-hard, to solve large-scale SPSPM instances efficiently, we design a

two-stage priority rule-based heuristic algorithm and an improved GA. We propose

a specially designed encoding and decoding method by considering the

characteristics of the SPSPM. (4) Extensive computational experiments are

conducted on a benchmark dataset consisting of 540 instances. The parameter

settings of the GA are determined based on the Taguchi method for the Design of

Experiment (DOE). The performance of our algorithms is analysed by comparing

them with the exact solver CPLEX.

2. Problem statement

The SPSPM is described as follows. We use a directed acyclic graph 𝐺 =
(𝑉, 𝐸) to represent a software project, in which the node set 𝑉 denotes tasks in the

project. The tasks are numbered from 0 to 𝐼, 𝑉 = {0,1,… , 𝐼}. Tasks 0 and 𝐼 are

dummy tasks that denote the start and the end of the project, respectively. The

duration of the dummy tasks is 0 and no resources are consumed when executing

them. The directed arc set 𝐸 denotes the precedence relationships between tasks,

𝐸 ⊆ 𝑉 × 𝑉. If (𝑖, 𝑗) ∈ 𝐸, there is a precedence relationship between tasks 𝑖 and 𝑗,
and task 𝑖 is the predecessor of task 𝑗. Task 𝑗 can only start after all its predecessor

tasks have been completed.

The set of required skills during project execution is denoted as 𝐾. The set

of the skills needed by task 𝑖 is marked as 𝐾𝑖. When executing task 𝑖, the required

workload related to skill k is 𝑊𝐿𝑖𝑘 man-days, 𝑊𝐿𝑖𝑘 > 0, 𝑘 ∈ 𝐾𝑖. If 𝑘 ∉ 𝐾𝑖, then

𝑊𝐿𝑖𝑘 = 0.

The employee set is denoted as 𝑅. Each employee masters one or more

skills. The set of employees equipped with skill 𝑘 is 𝑅𝑘, which means that there are

𝑔𝑘 = |𝑅𝑘| employees who are able to use skill 𝑘 . The binary parameter ℎ𝑟𝑘

indicates whether employee 𝑟 ∈ 𝑅 has the skill 𝑘,

ℎ𝑟𝑘 = {1 𝑖𝑓 𝑟 ∈ 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

156

Every employee can deal with multiple tasks on a working day. 𝜃𝑟𝑘 is the

maximum available workload for employee 𝑟 ∈ 𝑅𝑘 allocated to skill 𝑘 per day.

Without loss of generality, we standardise 𝜃𝑟𝑘 as a decimal in the interval [0,1]. If
employee 𝑟 does not master skill 𝑙 , 𝜃𝑟𝑙 = 0 . For each employee, the overall

workload in a day should not exceed the limit 1.

Employees need to be assigned tasks. Specifically, for each skill 𝑘

involved in task 𝑖, at least one employee is required. To finish the task on time, the

workload for employee 𝑟 devoted to task 𝑖 should not be less than the threshold

𝛾𝑖𝑘 ∈ [0,1], i.e., 𝜃𝑟𝑘 ≥ 𝛾𝑖𝑘. The number of employees allocated to a task using skill

𝑘 should not exceed 𝑔𝑘. In addition, the allocated employees are not allowed to be

replaced after assignment.

The start and finish times of task 𝑖 are 𝑠𝑖 and 𝑐𝑖 , respectively. The finish

time 𝑐𝐼 of the end dummy task equals to the makespan of the project. When there

are multiple skills involved in task 𝑖, the earliest start (latest finish) time of the

required skill by task 𝑖 is the start time (finish time) of task 𝑖. We use 𝑠𝑖𝑘 and 𝑐𝑖𝑘 to

indicate the start and end time of executing skill 𝑘 in task 𝑖 , respectively. The

duration 𝑑𝑖𝑘 of each skill 𝑘 in task 𝑖 is variable, which is dependent on the working

conditions of the assigned employees. The more the workload of employees finish

in a day, the shorter the duration of the related task, i.e., 𝑑𝑖𝑘 = 𝑊𝐿𝑖𝑘/∑ 𝜃𝑟𝑘𝑟∈𝑅𝑖𝑘 ,

where 𝑅𝑖𝑘 is the set of employees using skill 𝑘 allocated to task 𝑖. The deadline for

the project is 𝑇𝑚𝑎𝑥.

The objective of the SPSPM is to minimise the human resource cost by

generating a schedule that specifies what skills each employee should use to

perform which tasks, as well as the start and finish time of each task, while

satisfying the skill-task matching, precedence relationships, and the project

deadline constraints. The project human resource cost consists of two parts, i.e., the

fixed and the performance salary. The fixed salary is paid to employees as long as

the project has not been completed. The total fixed salary is calculated as

∑ 𝐶𝑟𝑐𝐼𝑟∈𝑅 , where 𝐶𝑟 is the daily fixed salary for employee 𝑟 . The performance

salary is paid to an employee only when she/he participates in a non-dummy task.

The total performance salary of the project is calculated as ∑ 𝐶𝑟
′𝑓𝑟𝑟∈𝑅 , where 𝐶𝑟

′ is

the daily performance salary for employee 𝑟 , and 𝑓𝑟 is the number of days the

employee actually works on the project.

3. Models

We first present a nonlinear programming model for the SPSPM. Then we

devise a linearisation method to linearise the nonlinear model such that we can use

exact solver (e.g., CPLEX) to solve the model.

3.1 Non-linear programming model

In addition to the time-related decision variables 𝑠𝑖 , 𝑐𝑖 , 𝑠𝑖𝑘 , 𝑐𝑖𝑘 , 𝑑𝑖𝑘

mentioned earlier, we also introduce three binary assignment variables 𝑥𝑟𝑖𝑘𝑡, 𝑦𝑟𝑖𝑘

and 𝑧𝑟𝑡. Specifically, if employee 𝑟 uses skill 𝑘 to execute task 𝑖 on the 𝑡-th day,

Software Project Scheduling with Multitasking

157

𝑥𝑟𝑖𝑘𝑡 = 1; otherwise 𝑥𝑟𝑖𝑘𝑡 = 0. If employee 𝑟 uses skill 𝑘 to execute task 𝑖, 𝑦𝑟𝑖𝑘 =
1; otherwise 𝑦𝑟𝑖𝑘 = 0. If employee 𝑟 is assigned to any non-dummy task on the 𝑡-
th day, 𝑧𝑟𝑡 = 1 ; otherwise 𝑧𝑟𝑡 = 0 . There is redundancy between these three

variables, so we apply several extra logical restrictions on them: (a) For 𝑥𝑟𝑖𝑘𝑡 and

𝑦𝑟𝑖𝑘, if 𝑦𝑟𝑖𝑘 = 0, which means that employee 𝑟 is not allocated to task 𝑖, then for

any 𝑡, 𝑥𝑟𝑖𝑘𝑡 = 0; if 𝑥𝑟𝑖𝑘𝑡 = 1 on day 𝑡, which represents that employee 𝑟 has been

assigned to task 𝑖 , then 𝑦𝑟𝑖𝑘 = 1. (b) For 𝑥𝑟𝑖𝑘𝑡 and 𝑧𝑟𝑡 , similar restrictions are

introduced. In addition, another role for 𝑥𝑟𝑖𝑘𝑡 and 𝑧𝑟𝑡 is to associate the assignment

variables with the time-related variables.

Based on the above descriptions, we formulate a nonlinear programming

model (NLP) for the SPSPM:

(NLP) Minimise ∑ 𝐶𝑟
′𝑓𝑟𝑟∈𝑅 + 𝐶𝑟𝑐𝐼 (2)

 Subject to:

 𝑠𝑗 ≥ 𝑐𝑖 ∀(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 0 (3)

 𝑠𝑖 = min𝑠𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (4)

 𝑐𝑖 = max𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (5)

 𝑠𝑖𝑘 + 𝑑𝑖𝑘 = 𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (6)

 𝑐𝐼 ≤ T𝑚𝑎𝑥 (7)

 𝑑𝑖𝑘 ≥ 𝑊𝐿𝑖𝑘/∑ 𝜃𝑟𝑘𝑟∈𝑅 𝑦𝑟𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (8)

 𝜃𝑟𝑘 ≥ 𝛾𝑖𝑘𝑦𝑟𝑖𝑘 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (9)

 ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝜃𝑟𝑘𝑘∈𝐾𝑖∈𝑉 ≤ 1 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (10)

 𝑦𝑟𝑖𝑘 ≤ ℎ𝑟𝑘 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (11)

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅 ≤ 𝑔𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ K, 𝑡 ∈ 𝑇 (12)

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≥ 𝑑𝑖𝑘 −𝑀(1 − 𝑦𝑟𝑖𝑘) ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (13)

 ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≤ 𝑑𝑖𝑘 +𝑀(1 − 𝑦𝑟𝑖𝑘) ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (14)

 ∑ 𝑧𝑟𝑡𝑡∈𝑇 = 𝑓𝑟 ∀𝑟 ∈ 𝑅 (15)

 𝑦𝑟𝑖𝑘 ≤ ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (16)

 𝑀 · 𝑦𝑟𝑖𝑘 ≥ ∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (17)

 𝑧𝑟𝑡 ≤ ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝑉 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (18)

 𝑀 · 𝑧𝑟𝑡 ≥ ∑ ∑ 𝑥𝑟𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝑉 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (19)

 0 ≤ 𝑠𝑖, 𝑐𝑖 ≤ T𝑚𝑎𝑥, 𝑠𝑖, 𝑐𝑖 ∈ 𝑍 ∀𝑖 ∈ 𝑉 (20)

 0 ≤ 𝑠𝑖𝑘 , 𝑐𝑖𝑘 ≤ T𝑚𝑎𝑥, 𝑠𝑖𝑘, 𝑐𝑖𝑘 , 𝑑𝑖𝑘 ∈ 𝑍 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (21)

 𝑥𝑟𝑖𝑘𝑡 , 𝑦𝑟𝑖𝑘 , 𝑧𝑟𝑡 ∈ {0,1} ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (22)

 𝑓𝑟 ∈ 𝑍+ ∀𝑟 ∈ 𝑅 (23)

In the NLP model, the objective function (2) minimises the total human

resource cost of the project. Because the prolongation of the project makespan

would increase the fixed cost, minimising function (2) can also indirectly achieve

the objective of minimising the project makespan.

The constraints of the NLP model can be divided into three groups. The

first group (constraints (3)-(7)) contains time-related constraints. Constraints in (3)

describe the precedence relationships. In constraints (4) and (5), the start (finish)

time of a task is determined by the earliest (latest) time of the assigned employees

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

158

when executing the task. Constraints in (6) indicate the relationship between the

duration of a task and its start/finish time. Constraint (7) is the project deadline

constraint.

The second group (constraints (8)-(15)) of constraints is related to

assignment. Constraints (8) restrict the total workload devoted by the assigned

employees should not be less than the required workload 𝑊𝐿𝑖𝑘 of the task, which

also influences the duration 𝑑𝑖𝑘. Note that although the inequality sign is used in

constraints (8), the inequality sign can also achieve the purpose to minimise 𝑑𝑖𝑘,

because the objective function also indirectly minimises the project makespan.

Constraints (9) are the minimum workload constraints. The workload of an

assigned employee 𝑟 should not be less than the threshold 𝛾𝑖𝑘. Constraints (10) are

the maximum workload constraints. The total workload per person per day cannot

exceed 1. Constraints (11) mean that employees are not able to use the skills that

they do not have. Constraints (12) represent the limits of the number of employees.

Constraints (13) and (14) guarantee that the employees are not be replaced after

assignment, and 𝑀 is a sufficiently large positive integer. Constraints (15) are used

to calculate the number of actual working days of employee 𝑟.

The third group (constraints (16)-(19)) of constraints describe the logical

relationships among the assignment variables. Constraints (16) and (17) reflect the

logical relationships between 𝑥𝑟𝑖𝑘𝑡 and 𝑦𝑟𝑖𝑘. Constraints (18) and (19) describe the

relationships between 𝑥𝑟𝑖𝑘𝑡 and 𝑧𝑟𝑡. Finally, constraints (20)-(23) define the range

of the decision variables. In addition, it can be seen that the constraints (4), (5) and

(8) are nonlinear.

3.2 Model linearisation

In this subsection, we linearise the model NLP. For the nonlinear

constraints, the constraints in (8) are the most difficult to linearise. We tackle this

problem by replacing 𝑑𝑖𝑘 in the constraint with auxiliary variables to form a linear

constraint.

First, we sum the daily workload devoted by employees using skills in a

task, and obtain the equivalent constraints of (8):

∑ ∑ 𝑥𝑟𝑖𝑘𝑡 ·𝑡∈𝑇 𝜃𝑟𝑘𝑟∈𝑅 ≥ 𝑊𝐿𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (24)

Then, to replace 𝑑𝑖𝑘 in constraints (6), (13) and (14), we introduce a binary

auxiliary variable 𝑒𝑖𝑘𝑡 . If skill 𝑘 of task 𝑖 is executed on the 𝑡-th day, 𝑒𝑖𝑘𝑡 = 1;

otherwise 𝑒𝑖𝑘𝑡 = 0 . According to the above definition, there are logical

relationships between 𝑒𝑖𝑘𝑡 and 𝑥𝑟𝑖𝑘𝑡 : if 𝑒𝑖𝑘𝑡 = 0, which means that task 𝑖 is not

executed by any employee with skill 𝑘 on the 𝑡-th day, then for any employees 𝑟,

𝑥𝑟𝑖𝑘𝑡 = 0. If for a day 𝑡, 𝑥𝑟𝑖𝑘𝑡 = 1, which means that employee 𝑟 is assigned to

task 𝑖, then 𝑒𝑖𝑘𝑡 = 1. These logical restrictions can be quantified as follows:

𝑒𝑖𝑘𝑡 ≤ ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖, 𝑡 ∈ 𝑇 (25)

𝑀 · 𝑒𝑖𝑘𝑡 ≥ ∑ 𝑥𝑟𝑖𝑘𝑡𝑟∈𝑅 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖, 𝑡 ∈ 𝑇 (26)

Actually, 𝑒𝑖𝑘𝑡 converts the original 𝑑𝑖𝑘 into a set of binary variables:

𝑑𝑖𝑘 = ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (27)

Software Project Scheduling with Multitasking

159

According to (27), constraints (6), (13) and (14) can be transformed
into a new set of equivalent linear constraints:

∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 = 𝑐𝑖𝑘 − 𝑠𝑖𝑘 + 1 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (28)

∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≥ ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 −𝑀(1 − 𝑦𝑟𝑖𝑘) ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (29)

∑ 𝑥𝑟𝑖𝑘𝑡𝑡∈𝑇 ≤ ∑ 𝑒𝑖𝑘𝑡𝑡∈𝑇 +𝑀(1 − 𝑦𝑟𝑖𝑘) ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 (30)

Finally, the following auxiliary constraints ensure that there are no

interruptions during project execution:

𝑠𝑖𝑘 ≤ 𝑡 · 𝑒𝑖𝑘𝑡 +𝑀(1 − 𝑒𝑖𝑘𝑡) ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (31)

𝑐𝑖𝑘 ≥ 𝑡 · 𝑒𝑖𝑘𝑡 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖 , 𝑡 ∈ 𝑇 (32)

Based on the above linearisation method, we obtain the mixed-integer

linear programming model (MILP) that is equivalent to model NLP:

(MILP) Minimise (2)

Subject to:

(3), (7), (9)-(12), (15)-(23), (24)-(32)

𝑠𝑖 ≤ 𝑠𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (33a)

𝑠𝑖 ≥ 𝑠𝑖𝑘 −𝑀 · 𝑢𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (33b)

∑ 𝑢𝑖𝑘𝑘∈𝐾𝑖 = |𝐾| − 1 ∀𝑖 ∈ 𝑉 (33c)

𝑢𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ V, 𝑘 ∈ 𝐾 (33d)

𝑐𝑖 ≥ 𝑐𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (34a)

𝑐𝑖 ≤ 𝑐𝑖𝑘 +𝑀 · 𝑣𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (34b)

∑ 𝑣𝑖𝑘𝑘∈𝐾𝑖 = |𝐾| − 1 ∀𝑖 ∈ 𝑉 (34c)

𝑣𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ V, 𝑘 ∈ 𝐾 (34d)

where the linear constraints (33) and (34) correspond to constraints (4) and (5), and

𝑢𝑖𝑘 , 𝑣𝑖𝑘 (𝑖 ∈ V, 𝑘 ∈ 𝐾) are binary auxiliary variables.

Proposition 1. The SPSPM is NP-hard.

Proof. Consider a special case of the SPSPM: The threshold of workload is

ignored, i.e., 𝛾𝑖𝑘 are set to 0, and the fixed salary for every employee is set to 1/
|R|. This special case has been studied by Xiao et al. (2013) and proved to be NP-

hard. Therefore, as a generalisation, the SPSPM is NP-hard. ∎

4. Algorithms

Since the SPSPM is NP-hard, to solve the large-scale SPSPM instances

efficiently, we design a two-stage priority rule-based heuristic algorithm and an

improved GA in this section.

4.1 Two-stage priority rule-based heuristic algorithm

The pseudocode of our two-stage priority rule-based heuristic algorithm is

shown in Algorithm 1. In Algorithm 1, tasks are first scheduled, and then

employees are assigned. Specifically, (a) the scheduling order of tasks using the

minimum total workload priority rule (Browning & Yassine, 2010); (b) the

assignment order of employees is determined according to the rule that the

maximum committable workload of the employees for a certain skill is from

highest to lowest. Finally, the start time and assignment for each task can be

obtained.

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

160

Algorithm 1. Two-stage priority rule-based heuristic algorithm

Step 1: Initialisation.

Add dummy task 0 to the completed task set 𝐶𝑔. The rest tasks are added to the unschedulable task

set 𝑆𝑔. The schedulable task set 𝐷𝑔 is set to empty.

Step 2: Select a task to schedule.

If 𝐷𝑔 is empty and the number of tasks in 𝐶𝑔 is less than the total number of tasks, then the tasks

whose predecessor tasks have been completed are chosen from 𝑆𝑔 and appended into 𝐷𝑔.

If 𝐷𝑔 is not empty, then the task with the minimum workload is selected from 𝐷𝑔 and denoted as 𝑖∗.
Step 3: Assign employees for the selected task.

Step 3.1: For each skill 𝑘∗ involved in task 𝑖∗ , calculate the total amount of workload that all

employees can put in it, i.e., 𝑒𝑓𝑓_𝑠𝑢𝑚𝑖∗𝑘∗ = ∑ 𝜃𝑟𝑘∗𝑟∈𝑅 , 𝜃𝑟𝑘∗ ≥ 𝛾𝑖∗𝑘∗ .
Step 3.2: For the skill, assign employees with the maximum 𝑒𝑓𝑓_𝑠𝑢𝑚𝑖∗𝑘∗.

Step 4: Determine the start time 𝒔𝒊∗𝒌∗ of skill 𝒌∗ in task 𝒊∗.
Step 4.1: Assign all available employees with skill 𝑘∗ to the task 𝑖∗, 𝑑𝑖∗𝑘∗ = ⌈𝑊𝐿𝑖∗𝑘∗ 𝑒𝑓𝑓𝑠𝑢𝑚𝑖∗𝑘∗

⁄ ⌉
Step 4.2: The start time 𝑠𝑖∗𝑘∗ of executing task 𝑖∗ with skill 𝑘∗ is not supposed to be earlier than the

finish time 𝑐𝑖∗
𝑝𝑟𝑒

 of 𝑖∗’s predecessor tasks. And the assigned employees should not be occupied

by other tasks (the earliest available time for the assigned employees is denoted as 𝑡𝑖∗𝑘∗
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒).

Therefore, the start time for a skill to be used is 𝑠𝑖∗𝑘∗ = max {𝑐𝑖∗
𝑝𝑟𝑒

, 𝑡𝑖∗𝑘∗
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒}, the finish time is

𝑐𝑖∗𝑘∗ = 𝑠𝑖∗𝑘∗ + 𝑑𝑖∗𝑘∗ − 1.

Step 5: Decide the start time 𝑠𝑖∗ of task 𝒊∗.
Repeat steps 3 and 4 until all skills in task 𝑖∗ are assigned to employees. Then, move task 𝑖∗ from

𝐷𝑔 to 𝐶𝑔. For task 𝑖∗, 𝑠𝑖∗(𝑐𝑖∗) is obtained according to Equations (4)-(5).

Step 6: Repeat steps 2 to 5 until the number of tasks in 𝑪𝒈 equals the total number of tasks.

4.2 Improved genetic algorithm

To solve the SPSPM more effectively, we also develop an improved GA.

GA is a classical population-based meta-heuristic algorithm, which has been

widely applied in project scheduling (Alba & Chicano, 2007; Li et al., 2018).

4.2.1 Encoding of a schedule

A schedule is encoded into a chromosome 𝑐ℎ = {𝑅𝐾, 𝑅𝐿, 𝑆𝐿, 𝐷𝑀}, where

(a) the random key vector 𝑅𝐾 = (𝑎0, 𝑎1, … , 𝑎𝑖, … , 𝑎𝐼) is used to indicate the order

of tasks to be scheduled, where 𝑎𝑖 ∈ [0,1] represents the priority value of task 𝑖. (b)

The employee vector 𝑅𝐿 = (𝑟0, 𝑟1, … , 𝑟𝑖, … , 𝑟𝐼) is used to indicate the order of

employees assigned to each task, where 𝑟𝑖 is an employee list for task 𝑖, and there

are |𝐾| sub-lists in 𝑟𝑖, the 𝑘-th sub-list is the order of employees to be assigned for

skill 𝑘 (𝑘 = 1,2, … , 𝐾). If a skill is not involved in the task, the corresponding sub-

list is empty. (c) In the skill vector 𝑆𝐿 = (𝑆𝐾0, 𝑆𝐾1, … , 𝑆𝐾𝑖, … , 𝑆𝐾𝐼) , 𝑆𝐾𝑖 =
(𝑠𝑘1, 𝑠𝑘2, … , 𝑠𝑘𝐾𝑖) is the order of |𝐾𝑖| skills involved in task 𝑖. (d) The employee

demand vector 𝐷𝑀 = (𝑑𝑚0, 𝑑𝑚1, … , 𝑑𝑚𝑖 , … , 𝑑𝑚𝐼) is used to show the number of

employees assigned to task 𝑖 , where 𝑑𝑚𝑖 = (𝑑𝑚𝑖𝑑1, 𝑑𝑚𝑖𝑑2, … , 𝑑𝑚𝑖𝑑|𝐾|) is a

|𝐾|-dimension vector and the value of each element is a decimal between 0 and 1

indicating the proportion of the number of employees assigned to a skill in task 𝑖 to

the total number of available employees.

Software Project Scheduling with Multitasking

161

4.2.2 Decoding

We design a decoding procedure to transform a chromosome into a

schedule (Algorithm 2). In Algorithm 2, we first initialise the parameters. Next, at

the start of each iteration, we update 𝐷𝐿. If 𝐷𝐿 is not empty, for each task 𝑖∗ in 𝐷𝐿,

we obtain the arrangement list (SkillList𝑖∗). Then, we choose available

resource_need employees according to the preferred employee priority assignment

method (Algorithm 3) (Line 6-11). After that, we update 𝑊𝐿𝑖∗𝑘∗ based on the

workload completed by the assigned employees (𝑅𝑖∗k∗
𝑎𝑠𝑠) (Line 11). When 𝑊𝐿𝑖∗k∗ ≤

0 , the demand for skill 𝑘∗ in task 𝑖∗ has been satisfied (Line 12). If all the

requirements of skills in task 𝑖 are satisfied, we update 𝐷𝐿 and 𝐶𝐿 (Lines 15-16).

Algorithm 2. Decoding procedure

Input: Project parameters, 𝑅𝐾, 𝑅𝐿, 𝑆𝐿, 𝐷𝑀

Output: 𝑥𝑟𝑖𝑘𝑡, s𝑖𝑘, c𝑖𝑘

1 Initialise: 𝐶𝐿, 𝐷𝐿, 𝑆𝐿, 𝑥𝑟𝑖𝑘𝑡, 𝑠𝑖𝑘 , 𝑐𝑖𝑘, 𝑡 ← 0

2 While 𝑡 < Tmax:

3 If len(𝐷𝐿) == 0 :

4 From 𝑆𝐿, select tasks whose predecessors have been added to 𝐶𝐿, and add them to 𝐷𝐿 in the

order of 𝑆𝐿

5 Else

6 For 𝑖∗ in 𝐷𝐿:

7 SkillList𝑖∗ ← 𝑆𝐾𝑖∗ in 𝑆𝐿
8 For 𝑘∗ in SkillList𝑖∗:
9 resource_need ← 𝑐𝑒𝑖𝑙(𝑑𝑚𝑖∗𝑑𝑘∗ ∗ |𝑅𝑖∗𝑘∗|) , where 𝑅𝑖∗𝑘∗ = {𝑟|𝜃𝑟𝑘∗ ≥ 𝛾𝑖∗𝑘∗ , 𝑟 ∈ 𝑅} .

R_List𝑖∗𝑘∗ ← r𝑖∗[𝑘
∗] in 𝑅𝐿

10 Based on Algorithm 3, select up to resource_need employees from R_List𝑖∗𝑘∗, update

s𝑖∗𝑘∗ and 𝑥𝑟𝑖∗𝑘∗𝑡
11 Calculate the rest workload of 𝑊𝐿𝑖∗k∗ after the 𝑡 -th day, i.e.,𝑊𝐿𝑖∗𝑘∗ ← 𝑊𝐿𝑖∗𝑘∗ −

∑ 𝜃𝑟𝑘∗𝑟∈𝑅𝑖∗k∗
𝑎𝑠𝑠 , ∑ 𝜃𝑟𝑘∗𝑟∈𝑅𝑖∗k∗

𝑎𝑠𝑠

12 If 𝑊𝐿𝑖∗k∗ ≤ 0: c𝑖∗𝑘∗ ← t End if

13 End for

14 End for

15 Move the finished tasks in 𝐷𝐿 to C𝐿
16 t ← 𝑡 + 1

17 End if

18 End While

We use an example to explain Algorithm 3. As shown in Figure 1(a), the

preferred employee for task 𝐴 is 𝑅1, but 𝑅1 is occupied at 𝑡0, thus employee 𝑅0

performs the task; at time 𝑡1, 𝑅1 returns to the idle state again, and if more than

70% of the workload of task 𝐴 has been completed, the reassignment of 𝑅1 to the

task is abandoned (Figure 1(b)); otherwise, reassign 𝑅1 to participate in task 𝐴 and

restore the workload required for task 𝐴 so that it starts at time 𝑡1 (Figure 1(a)).

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

162

Algorithm 3. Preferred employee priority assignment method

1 For 𝑟 in R_List𝑖∗𝑘∗:
2 If resource_need >0:

3 If r is available in day t:

4 If day t is the first day to process skill 𝑘∗ of activity 𝑖∗:
5 resource_need ← resource_need -1

6 𝑥𝑟𝑖∗𝑘∗𝑡 ← 1

7 update the rest workload of skill 𝑘∗ of activity 𝑖∗ and available efficiency of resource r

at day t

8 𝑠𝑖∗𝑘∗ ← 𝑡
9 Else:

10 If the ranking of employee𝑟 is higher than that of assigned employee 𝑟′:
11 If the rest workload of skill 𝑘∗ of activity 𝑖∗ is more than 30% of original workload:

12 Reset 𝑥𝑟′𝑖∗𝑘∗𝑡′ (𝑟
′ ∈ 𝑅, 𝑡′ ∈ [0, 𝑡 − 1]) and restore the 𝑊𝐿𝑖∗k∗ to initial value

13 Repeat line 5 to 8

14 End if

15 Else:

16 Repeat line 5 to 7

17 End if

18 End if

19 End if

20 End if

21 End for

A

t0 t1 t2

<70% WLA

R1

R0

AR1

R0

t1 t3

R1

R0

(a)

A

R1

R0

t0 t1

>= 70% WLA

(b)

Figure 1. Improvement of the decoding procedure

4.2.3 Population initialisation

There are 𝑃𝑂𝑃 individuals in the population. In the initial population, the

random key vectors are generated randomly. The employee vectors are generated

based on two heuristic methods, and each heuristic method generate 𝑃𝑂𝑃 2⁄

individuals: (a) The employees are ranked according to the ascending order of their

performance salary. (b) The employees are ranked in the descending order

indicated by their cost performance (for skill 𝑘, the cost performance of employee

𝑟 is the ratio of its performance salary 𝐶𝑟
′ to its maximum available workload 𝜃𝑟𝑘).

For the skill vectors, the skills in a task are ranked on the descending order

of 𝑒𝑓𝑓𝑠𝑢𝑚𝑖𝑘
(𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾𝑖). For the employee demand vectors, in the 𝑛-th (𝑛 =

1,2…𝑃𝑂𝑃) individual, all the non-zero random keys in 𝐷𝑀 are set to 𝑛 𝑃𝑂𝑃⁄ . It

should be noted that if 𝑘 ∈ 𝐾𝑖, 𝑑𝑚𝑖𝑑𝑘 ≠ 0.

Software Project Scheduling with Multitasking

163

4.2.4 Crossover, mutation and selection operators

We randomly pair the individuals in the population to form 𝑃𝑂𝑃/2 pairs of

parent individuals. For paired individuals, the crossover and mutation operators are

applied to 𝑅𝐾 and 𝐷𝑀; 𝑆𝐿 and 𝑅𝐿 are directly copied to their child individuals.

In crossover operator, a random number 𝑟 ∈ (0,1) is generated first. If 𝑟 ≤
𝑅𝑐 (crossover probability), the average value of the values on 𝑅𝐾 and 𝐷𝑀 of the

parent individuals is taken as the corresponding value of the child individual.

Otherwise, the parent individuals will conduct an average calculation with two

special chromosomes, of which all random key values on 𝑅𝐾 and 𝐷𝑀 are 1 or 0.

After crossover, for the child individuals, the probability of mutation of

each gene is 𝑅𝑚. If a gene is selected to mutate, we randomly choose a position on

𝑅𝐾 and change its value to a newly generated random decimal between (0,1).

Then, we choose a non-zero position on 𝐷𝑀 and change its value in the same way

as above.

After crossover and mutation, we update the population. We first choose

the best 𝑅𝑒 × 𝑃𝑂𝑃 individuals from the parent population and copy them directly

to the new population 𝑐ℎ′′, where 𝑅𝑒 is the rate of the elite. Then, we obtain the

rest individuals in 𝑐ℎ′′ by the following way: we sample 𝑃𝑂𝑃 − 𝑅𝑒 × 𝑃𝑂𝑃 times.

In each sampling process, two individuals are randomly selected from 𝑐ℎ′, and the

individual with the lower objective function value is added to the population 𝑐ℎ′′.

5. Computational experiments

The proposed algorithms have been implemented in Python 3.7. Our

computational experiments are conducted on a computer with Intel Core i5 3.20

GHz CPU and Windows 7 64-bit.

5.1 Benchmark dataset

Because there is no suitable dataset for our problem at present, we generate

the benchmark dataset based on full-factorial experimental design. We use the

project scheduling problem instance generator RanGen (Demeulemeester et al.,

2003) to produce the project networks. There are two parameters in RanGen that

define the structure of the network: the number of tasks and the order strength

(OS). The OS is the ratio between the number of precedence relationships in the

network and the theoretically maximum number of precedence relationships. The

network with a higher OS value has a higher network density. We specify various

levels for the number of activities, OS, the number of employees, and the number

of skills (Table 1), and generate five instances for each parameter combination.

Therefore, we obtain a total of 4 × 3 × 3 × 3 × 5 = 540 project instances.

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

164

The number of skills mastered by each employee is sampled from the

discrete interval [1, ⌈|K|/2⌉]. The maximum devoted workload for employee 𝜃𝑟𝑘 is

chosen randomly from the set {0.25, 0.5, 0.75,1.0}. The number of skills involved

in each task is also sampled from the discrete interval [1, ⌈|K|/2⌉]. The workload

𝑊𝐿𝑖𝑘 required by each skill is chosen from the set {3,4,5}. The threshold 𝛾𝑖𝑘 of

workload is calculated by 1/4 multiplying a number chosen from the discrete

interval [1,4 × 𝜃𝑟𝑘
∗], where 𝜃𝑟𝑘

∗ = max𝑟 𝜃𝑟𝑘. This approach ensures that there is at

least an employee who meets the threshold requirements. For the fixed salary and

performance salary of every employee, they are randomly chosen from different

intervals shown in Table 2 based on the employee’s average available workload

𝜃𝑟 = ∑ 𝜃𝑟𝑘𝑘∈𝐾𝑟 /|𝐾𝑟|, where 𝐾𝑟 is the skill set mastered by employee 𝑟.

We use CPLEX 12.9 to solve the instances. The maximum time to solve an

instance is limited to 600 seconds. The value of 𝑀 in model MILP is set to 1 ×
108 . Based on the calculation results, we divide the benchmark dataset into 3

subsets (Table 3), i.e., SETO contains instances that have been solved optimally,

SETF contains instances with only feasible

solutions, and SETI contains instances whose feasible solutions are not obtained.

Table 1. Parameter settings in the

benchmark dataset

Parameter Values

Number of tasks (I) 5 10 20 30

Order strength (OS) 0.3 0.5 0.7

of employees (|𝑅|) 4 6 8

of skills (|𝐾|) 3 5 7

Table 3. Number of instances in

different subdatasets
of tasks SETO SETF SETI

5 105 28 2
10 16 50 69
20 0 0 135
30 0 0 135

Sum 121 78 341

Table 4. Levels of parameter values
Levels POP 𝑅𝑐 𝑅𝑚 𝑅𝑒

1 50 0.5 0.15 0.04

2 100 0.7 0.35 0.08

3 200 0.9 0.55 0.12

Table 2. Employee’s average available workload

and salaries
Average devoted

workload

Daily fixed

salary

Daily performance

salary

𝜃𝑟 ≥ 0.75 [31,40] [61,70]

0.75 > 𝜃𝑟 ≥ 0.5 [21,30] [51,60]

𝜃𝑟 < 0.5 [11,20] [41,50]

Software Project Scheduling with Multitasking

165

5.2 Parameter settings

We applied the Taguchi method of DOE based on 𝑆𝐸𝑇𝑂 to determine the

best values of parameters in the proposed GA. There are four parameters in the

GA: the size of the population (POP), the probability of crossover (𝑅𝑐), the

probability of mutation (𝑅𝑚) and the rate of elite (𝑅𝑒). As shown in Table 4, we set

3 levels for each parameter.

The average response variable (ARV) is defined as follows:

ARV =
∑ [(𝑜𝑏𝑗𝑖−𝑜𝑝𝑡𝑖)/𝑜𝑝𝑡𝑖]𝑖∈SETo

|SETo|
 (35)

where 𝑜𝑝𝑡𝑖 is the optimal objective function value of the 𝑖-th instance obtained by

CPLEX, 𝑜𝑏𝑗𝑖 is the objective value calculated by the GA. We choose the 𝐿9(3
4)

orthogonal table, and the termination condition of the GA is to generate up to 1,000

schedules. The orthogonal array and values of ARV are shown in Table 5. Table 6

displays the range of the ARV values as well as the significant rank of each factor.

Figure 2 describes the changing trend of the ARV. It can be seen that the parameter

that has the most impact on the GA is the probability of mutation (𝑅𝑚), the second

one is the rate of elite (𝑅𝑒),

followed by the size of population (POP) and the probability of crossover (𝑅𝑐).

Therefore, the final parameter settings are POP= 50 (level 1), 𝑅𝑐 = 0.7 (level 2),

𝑅𝑚 = 0.55 (level 3) and 𝑅𝑒 = 0.12 (level 3). These parameter settings will be

adopted in the following experiments.

Table 6. Average ARV and rank for each factor

Levels POP 𝑅𝑐 𝑅𝑚 𝑅𝑒

1 0.0273 0.0304 0.0321 0.0319

2 0.0289 0.0290 0.0312 0.0289

3 0.0307 0.0296 0.0256 0.0281

Range 0.0034 0.0014 0.0065 0.0038

Rank 3 4 1 2

Table 5. Orthogonal array and values of ARV

No.
Factors

ARV
POP 𝑅𝑐 𝑅𝑚 𝑅𝑒

1 1 1 1 1 0.0327

2 1 2 2 2 0.0275

3 1 3 3 3 0.0218

4 2 1 2 3 0.0297

5 2 2 3 1 0.0264

6 2 3 1 2 0.0306

7 3 1 3 2 0.0287

8 3 2 1 3 0.0329

9 3 3 2 1 0.0365

Figure 2. GA factor level trend

0.5 0.7 0.9

0.025

0.030

0.035

0.15 0.35 0.55 0.04 0.08 0.12

𝑃𝑂𝑃 𝑅

A
R

V
A

R
V

𝑅m 𝑅

0.025

0.030

0.035

50 100 200

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

166

5.3 Main results

We apply our two-stage priority rule-based heuristic algorithm and GA to

solve the benchmark dataset. For each instance, we use the GA to obtain three

solutions and calculate the average objective function value as the final results of

the GA. The termination condition of our GA is to generate up to 1,000 schedules.
For the instances in SETO and SETF, we use the average relative deviation

𝐴𝑅𝐷(𝑀, 𝑆𝐸𝑇) =
∑ [(𝑜𝑏𝑗𝑖

𝑀−𝑜𝑏𝑗𝑖
𝐶𝑃𝐿𝐸𝑋)/𝑜𝑏𝑗𝑖

𝐶𝑃𝐿𝐸𝑋]𝑖∈SET

|𝑆𝐸𝑇|
× 100%, (𝑀 ∈ {𝐺𝐴, 𝐻𝐴},

𝑆𝐸𝑇 ∈ {𝑆𝐸𝑇𝑂, 𝑆𝐸𝑇𝐹}) from the results obtained by CPLEX to evaluate the

performance of our algorithms, where 𝑜𝑏𝑗𝑖
𝐺𝐴 and 𝑜𝑏𝑗𝑖

𝐻𝐴 are the values of the

objective function of the 𝑖-th instance calculated by the GA and the two-stage

priority rule-based heuristic algorithm respectively, and 𝑜𝑏𝑗𝑖
𝐶𝑃𝐿𝐸𝑋 is the best

objective value obtained by CPLEX. For the instances in SETI, we compare the
results of the GA with the priority rule-based heuristic algorithm, and the metric

𝐼𝑚𝑝 =
∑ [(𝑜𝑏𝑗𝑖

𝐻𝐴−𝑜𝑏𝑗𝑖
𝐺𝐴)/𝑜𝑏𝑗𝑖

𝐻𝐴]𝑖∈SET𝐼

|SET𝐼|
× 100% is adopted to measure the

improvement of the GA compared with the priority rule-based heuristic algorithm.
The average CPU times to solve each instance are used to evaluate the efficiency of
the algorithms.

Table 7 shows the results on SETO. From Table 7, we can see that our GA
performs well. The average gap to the optimal solutions is only 2.37%. In most cases,
the CPU times of our GA are less than those of CPLEX. Our GA is far better than the
priority rule-based heuristic algorithm. Table 8 displays the results on SETF, from
which we can see that our GA obtains better solutions than CPLEX (the average gap
is negative, which means that our GA is better) and spends less CPU times. The
average gap between the heuristic algorithm and CPLEX is 22.04%. Table 9 gives
the results on SETI, showing that the proposed GA is significantly better than the
heuristic algorithm.

In summary, for the easy instances, our GA is able to get solutions that are
very close to the optimal solutions in a short time. For the difficult instances, the
performance of our GA is far better than CPLEX and our priority rule-based heuristic
algorithm, and the GA is able to obtain satisfying solutions in a short time. In
addition, the quality of the solution calculated by our GA is higher than that of our
priority rule-based heuristic algorithm. The proposed GA is effective and efficient.

Table 7. The computational results on SETO

Number of tasks OS
ARD CPU(s)

GA HA GA CPLEX

5

0.3 2.19% 36.12% 90.41 64.95

0.5 2.02% 30.54% 93.36 144.95

0.7 1.73% 25.67% 93.43 141.78

10

0.3 4.37% 36.57% 95.03 365.68

0.5 7.12% 51.16% 94.15 296.72

0.7 3.99% 32.63% 98.43 277.32

Average 2.37% 31.52% 93.11 145.99

Software Project Scheduling with Multitasking

167

Table 8. The computational results on SETF

Number of tasks OS
ARD CPU (s)

GA HA GA CPLEX

5

0.3 -8.36% 25.40% 97.38 600.19

0.5 -8.31% 6.91% 100.25 600.70

0.7 -9.72% 11.90% 104.97 600.11

10

0.3 -5.19% 28.30% 95.11 600.83

0.5 -4.57% 23.30% 97.69 600.19

0.7 -8.83% 17.46% 103.16 600.09

Average -7.10% 22.04% 98.93 600.35

Table 9. The computational results on SETI

Number of tasks OS Average 𝐼𝑚𝑝 of GA CPU times (s) of GA

5
0.5 25.21% 101.16

0.7 14.82% 107.81

10

0.3 27.43% 105.99

0.5 25.16% 113.36

0.7 22.42% 119.31

20

0.3 23.78% 125.78

0.5 22.86% 136.28

0.7 22.04% 161.31

30

0.3 20.97% 155.28

0.5 22.14% 175.73

0.7 19.47% 212.95

Average 22.51% 151.10

5.4 Sensitivity analysis

We further investigate the factors that influence the GA. First, from Tables

7-9, we can see that the OS value does not have a significant impact on the results,

which means that the GA is robust for the different number of precedence

relationships in a project.

Then, we consider the impact of the number of skills |𝐾| and the number

of employees |𝑅| in different datasets (see Figure 3). Note that in Figure 3, some

points/lines are not displayed because of the lack of corresponding combination

instances in the dataset. We can find from Figure 3 that as the number of skills

increases, the performance of the GA becomes worse, which is more significant in

small-scale instances. For the number of employees, in the small-scale instances,

the impact of the GA is weakened as |𝑅| increases. But in large-scale instances, this

phenomenon is the opposite, which means that our GA is more suitable for large-

scale software project scheduling problems.

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

168

Figure 3. Impacts of different factors on the GA

6. Conclusions and future research

Taking into account multitasking and variable task durations in software

project, we investigate the SPSPM. For this problem, we formulate a nonlinear

programming model, which is then transformed into an equivalent mixed-integer

linear programming model. To effectively solve the NP-Hard SPSPM, a two-stage

priority rule-based heuristic algorithm and an improved GA are proposed. A

benchmark dataset consisting of 540 project instances is generated by using full-

factorial experimental design. Based on the larger-scale computational

experiments, we analyse the performance of our proposed algorithms by comparing

the them with CPLEX, which reveals the effectiveness and advantages of our GA.

The sensitivity analysis also indicates that our GA is robust and that our GA is

especially suitable for solving large-scale instances.

Future work will further develop more efficient algorithms for the SPSPM.

It would also be interesting to consider more realistic factors faced by software

project management, such as uncertainty (Li et al., 2020), resource leveling (Li et

al., 2021), and preemption (Liu et al., 2019).

Acknowledgements

This work was supported by the National Natural Science Foundation of

China (Grant Number 71602106).

3 5 7

|R|=4
|R|=6
|R|=8

-0.20

-0.15

-0.10

-0.05

0.00

0.05

3 5 7

|R|=4
|R|=6
|R|=8

3 5 7

|R|=4
|R|=6
|R|=8

0.00

0.02

0.04

0.06

0.08

3 5 7

|R|=4
|R|=6
|R|=8

g
ap

𝐾

g
ap

0.00

0.10

0.20

0.30

3 5 7

|R|=4

|R|=6

|R|=8

Im
p

3 5 7

|R|=4
|R|=6
|R|=8

0.00

0.10

0.20

0.30

3 5 7

|R|=4
|R|=6
|R|=8

Im
p

3 5 7

|R|=4
|R|=6
|R|=8

𝐾

(a) Instances in 𝑆𝐸𝑇 with 5 tasks (left) and 10 tasks (right)

𝐾 𝐾

(b) Instances in 𝑆𝐸𝑇𝐹 with 5 tasks (left) and 10 tasks (right)

(c) Instances in 𝑆𝐸𝑇𝐼 with 5 tasks (left) and 10 tasks (right)

𝐾 𝐾
(d) Instances in 𝑆𝐸𝑇𝐼 with 20 tasks (left) and 30 tasks (right)

𝐾 𝐾

Software Project Scheduling with Multitasking

169

REFERENCES

[1] Alba, E., Chicano, J.F. (2007), Software project management with Gas.

Information Sciences, 177(11), 2380-2401;

[2] Browning, T. R., Yassine, A. A. (2010), Resource-constrained multi-project

scheduling: Priority rule performance revisited. International Journal of

Production Economics, 126(2), 212-228;

[3] Crawford, B., Soto, R., Johnson, F., Monfroy, E., Paredes, F. (2014), A

max-min ant system algorithm to solve the software project scheduling

problem. Expert Systems with Applications, 41(15), 6634-6645;

[4] Demeulemeester, E., Vanhoucke, M., Herroelen, W. (2003), RanGen: A

random network generator for activity-on-the-node networks. Journal of

scheduling, 6(1), 17-38;

[5] Hauder, V.A., Beham, A., Raggl, S., Parragh, S.N., Affenzeller, M. (2020),

Resource-constrained multi-project scheduling with activity and time

flexibility. Computers & Industrial Engineering, 150, 106857;

[6] Huang, H.C., Lee, L.H., Song, H., Eck, B.T. (2009), SimMan – A

simulation model for workforce capacity planning. Computers & Operations

Research, 36(8), 2490-2497;

[7] Kazemipoor, H., Tavakkoli-Moghaddam, R., Shahnazari-Shahrezaei, P.,

Azaron, A. (2013), A differential evolution algorithm to solve multi-skilled

project portfolio scheduling problems. The International Journal of Advanced

Manufacturing Technology, 64(5), 1099-1111;

[8] Kolisch R., Heimerl C. (2012), An efficient metaheuristic for integrated

scheduling and staffing it projects based on a generalized minimum cost

flow network. Naval Research Logistics, 59(2), 111-127;

[9] Li, H., Hu, Z., Zhu, H., Liu, Y. (2021), Preemptive resource leveling in

projects. Economic Computation and Economic Cybernetics Studies and

Research, 55(4), 51-68;

[10] Li H., Womer K. (2009), Scheduling projects with multi-skilled personnel

by a hybrid milp/cp benders decomposition algorithm. Journal of Scheduling,

12(3), 281;

[11] Li, H., Xiong, L., Liu, Y., Li, H. (2018), An effective genetic algorithm for

the resource levelling problem with generalised precedence relations.

International Journal of Production Research, 56(5), 2054-2075;

[12] Li, H., Zhang, X., Sun, J., Dong, X. (2020), Dynamic resource levelling in

projects under uncertainty. International Journal of Production Research,

1-21;

Hongbo Li, Hanyu Zhu, Linwen Zheng, Yinbin Liu

__

170

[13] Liu, Y., Hu, Z., Li, H., Zhu, H. (2019), Does preemption lead to more

leveled resource usage in projects? a computational study based on mixed-

integer linear programming. Economic Computation and Economic

Cybernetics Studies and Research, 53(4), 243-258;

[14] Luna F., González-álvarez, D. L., Chicano, F., Vega-Rodríguez, M.A.

(2014), The software project scheduling problem: a scalability analysis of

multi-objective metaheuristics. Applied Soft Computing, 15(2), 136-148.;

[15] Maenhout, B., Vanhoucke, M. (2016), An exact algorithm for an integrated

project staffing problem with a homogeneous workforce. Journal of

Scheduling, 19(2), 107-133;

[16] Minku L.L., Sudholt, D., Yao, X. (2014), Improved evolutionary algorithm

design for the project scheduling problem based on runtime analysis. IEEE

Transactions on Software Engineering, 40(1), 83-102;

[17] PMI (Project Management Institute). (2016), Pulse of the profession 2016:

The high cost of low performance;

[18] Standish Group. (2015), CHAOS Report, 2015,

http://www.standishgroup.com;

[19] Xiao, J., Ao, X. T., Tang, Y. (2013), Solving software project scheduling

problems with ant colony optimization. Computers & Operations Research,

40(1), 33-46.

http://www.standishgroup.com/

